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on fie generalized relativistic LiouviUe equilibriumt 
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Madrid, Spain 
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Abstract. We discuss the possibilities for the introduction of a scalar entropy S(x) in the 
framework of the relativistic kinetic theory, in order to obtain a generalized ‘equilibrium’ 
distribution function when the cross section is identically zero (‘Liouville equilibrium’). We 
further study its particuiar form in uniform space-times, its properties against those of the 
Jiittner-Synge function and the meaning of its non-relativistic l i t .  

It is well known that a collision-free relativistic distribution function f(x, p) must satisfy 
he ‘one-particle Liouville equation’, 

w Q f ( x ,  P) = 0 (1) 

where2’(x) denotes the Lie derivative with respect to X, and Xis the vector field in the 
pdcle phase space P7( V,) defined by 

x=(pP, Q j =  -p’,yp”p”) 

where 

(Y,p=o,1,2,3 i,j . . . =  1,2,3. 

b b n  (1) of course implies that f is a constant of motion. The problem of finding 
f(4 P) reduces then to the problem of constructing constants of motion and choosing a 
tunChd form for the function. 

In this paper we shall make use of a physical interpretation of the zeroth order 
moment of the distribution function proposed by Bel (1971, private communication) 
“ Qoquet-Bruhat (197 1, unpublished) to justify a particular functional form for 
’(!p)* In8 3 we show that this function is compatible with the metric of uniform model 

and can be used as a ‘global equilibrium’ function in the kinetic theory Of 

QmoloU. As is well known, the Boltmann equilibrium (Jiittner-Synge) function is 
“Patible with non-stationary space-times; thus it can only be used in cosmology 

In g 4  We compqe the non-relativistic limits of the Juttner-Spge and our 
functions and show that the limit of the first is the classic Maxwell- 

‘Ibann function and the limit of the second is a new distribution function, the 

'%earth PwidlY Supported by G ~ p o  Interuniversitario de Fisica Te6rica (GIFT), Spain. 

‘local equilibrium’ (Hakim 1968). 
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solution of the classic Liouville equation for the dynamic system mnesponbg to the 
Newtonian c" lOgy.  

1. The scalar entropy density 

Bel (1969, 1971, private communication) and Choquet-Bruhat (1971, unpublished) 
have shown that the zeroth-order moment of the distribution function 

where P(x)  is the mass hyperboloid and o ( p )  is the invariant volume element on P ( ~ )  

gives, when the particle mass m is not zero?, a physical interpretation. Given a domain 
G of the space-time manifold V4,.the integral 

A = j G  r/A(x) 

(where TJ is the volume element on V4: 7 =a dxo A dxl A dx2 A dx3) represents the 
sum of the proper times during which each trajectory of a particle remains in the 
considered region. In the case m f 0, the distribution function is then able to be 
normalized from the zeroth-order moment, and we can interpret it as an 'occupation 
number of proper times granules'. We shall then define the action density as Ah)  and 
the action entropy as 

The well known probability argument (Synge 1957)$ states that the probabW' 
of a given distribution depends monotonically on S(x) .  As a condition to be satisfiedby 
a Liouville 'equilibrium' distribution function we shall maximize S(x),  while keeping 
h w i a n t  the first two moments which are N"(x), the particle current vector, and 
T"'(x), the energy-momentum tensor. We begin with the 'variational' principle 

6S(X) + h,6W(x)  + pas6T"P(x) = 0 (3) 

whose solutions (Bel 1971, private communication) are of the form 

If we want the moments of f to converge, A must be timelike, i.e. A22go (we use 
signature +2) and pasp"pP s 0. 

The condition of equation (4) gives the functional form of an 'equilibrium' 9 %  

distribution. Perhaps the name 'generalized equilibrium distribution function 
justified, since when pa' = 0 we re-obtain the Juttner-Synge distribution funaon' 

't w e  shall assume that this mass is constant and the same for all particles of the 
f see appendix for a detailed discussion. 
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supping now that equation (4) verifies the Liouville equation (1)' we obtain (U" 
e unitary tangent vector to a geodesic of V, which represents the mean being th 

fo~-velocity of the fluid) 

bat is, B must be a constant and hppP and puppups first integrals of the geodesic 
equations of V4. We shall suppose, in view of future cosmological applications, that 
hP=o,  i.e. that V, is non-stationary. 

u"Va(p.,,pUpP> = 0 u"V,(A,-,pP) = O  u"V,B = 0 (5) 

3. llie generalized equilibrium distribution fondon 

order to deduce some properties of the 'Bel function' 

f ( x ,  P )  = B exP(PuPP"p@) 
we shall work in local orthonormal coordinates (Ehlers 1971) in which 

w ( p )  = (E2-  m2)l" dE A sin 8 de A d4. 

~ " @ p " p ~  = - zm-'(E2- m2) 
Defining 

(5b) 

(6) 

which will be justified later, we find for the action density 

A = ?rJ;;Bm2 U($, 2'2) 

where U(a, b, z) is the Kummer function (Magnus et al 1966). If we now break down 
the first moments of the distribution function in the normal way in terms of the basic 
teosors gas and U", we get 

Nu E nua EPU" T"@ = (p +p)u"u@ +pg"@. 
m 

For the 'numerical world density' n, 'energy density' p and 'isotropic pressure' p, we 
obtain expressions: 

n = , & B ~ ~ ~ - ~ ~ ~  p = 7rJ;;Bna4U(q, 3'2). (7) 
3p = " k m 4 ( ~ ( ; ,  3 , ~ ) -  U(;., 2, z))- 

!@equations obviously imply that the 'perfect gas equation of state' p = nkT, which 
&a&fied by the Jiittner-Synge function, does not hold for our Bel function. We can, 
however, obtain 'energetic' equations, relating p and p in both the low (Z + a) and high 
(z+o) temperature limits. 

In fact, using the well known formulae (cf for example Magnus er a1 1966) 

R e b 3 2 , b f 2  m, b, Z)j+O = r(a> r(b - 1) Z 1 - b  +O(lz(Reb-2) 
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we obtain 

18) P = P  (Iz I + 00) I.L =3P (12 I + 0) 
which coincides with the corresponding formulae for the Jiittner-Synge fundon ,+,hen 
T+ 0 and T+ 00, respectively. Moreover, in these two limits both the Jfimer-Spg 
and the Bel functions can be represented by a perfect fluid with equationof $htep-nT 
where y = (ultra-relativistic, T+ 00) and y = $ (classic, T+ 0). This type of result could 
lead us to suppose that the physical description obtained from both functions mut be 
very similar to the two limits under consideration. It is at intermediate temperawes 
in a physical sense-that we can expect differences. The preliminary results of 
and Gracia (1973, unpublished) point in this direction. 

4. Bel's function in uniform space-times 

It is well-known (Ehlers et a1 1968) that the Robertson-Walker spaces, with &e 
following metric in coordinates adapted to the mean velocity U, 

ds2=dt2+R(t)2K(r)26ij dx' dx' (9) 

q2 = R(t)2h,spapa R ( ~ ) ' ( G ~  + u,ua)paps. (101 

ds = - &dx0)' + <-'K2Sij dx dx' 

q2 = (-'haopap8 (12) 

admit a first integral of second order to the geodesic equations, i.e., 

We can also write the metric equation (9 )  in coordinates adapted to 5, the generator of 
conformal rigidness (Bel 1969): 

(11) 

where < = ((x') is a function of time only. Our first integral ist 

and the 'Bel function' equation (5 ) ,  writing pappaps I - C2q2 (5 a real constant), 
becomes 

(13) 

The mean four-velocity of the relativistic gas at a point P of the space-time i-nanifold ", 
is given by 

The relative spatial velocity of a particle with four-momentum p,  with respect to the 
mean U is 

(13b) 

f(x, P) = B exp(-P2q2). 

U(P) = <-l((P).  (1%) 

v, =-((uppp)-lh,wp* 

which implies 

(15) 
2 2 - 1 / 2  v=q t2 (m2+5  q . 

2 2 -2. 

7 This form of the first integral justifies the assumption made in writing (5b) ,  choosing =tri 
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nustbe first integral q is related to the relative velocity v, and becomes zero only when 
1150. n e  limit of equation (15) when q + 00 is 5. This fact is related to the ‘conformal‘ 
 el and &card 1966, Alvarez and Bel 1973) interpretation of the space metric, in 
which thelight velocity (With c = 1 )  is o (light) = 5. In the Minkowskian limit of equation 
(11) (i.e., 6 + 1 ,  K + l ) ,  the first integral equation (14) has the limit 

M&g a series development in v n  (low velocities), 

q2=  m2(v2+0(v4) )  

we can then write at v4 = 0 order, 

fm+B exP(-m 5 1. 

q2+m 2 2 2  v y = ( l -  y2)-1’2. 

(16) 2 2 2  

Identifying equation (16) with the Maxwell-Boltzmann distribution function, we are 
led to the interpretation 

12= +(xP)/2mkT ( 174 
where 

$(XP)lMinkowski E 1 .  
In the next section we shall show that there is another possible limit of equation ( 1 3 ) ,  
without the ‘weak field’ assumption implicit in equation (17a). 

When l+m (i.e. T +  0), from equation (7) (with z 3 m212(-2 in our case) and the 
asymptotic expressions of the Kummer functions, we obtain 

which, upon substituting equation ( N u ) ,  reduces to 

Identdying equation (1 8a) at the T’ = 0 limit with the perfect gas equation p = nkT we 
get d4) = c2, i.e. 

12= c2/2mkT (1%) 

n 

awe obtain the usual equation of state only when T2‘ 0. 

5. non-relatiMc Limit 

In the last Section we have Seen that the Minkowskian, low-velocity limit of the Bel 
?‘On is (as in the Juttner-Synge function) the Maxwell-Boltzmann function. But in 
$mg we have made the weak-field (Minkowskian) approximation which seems 
wq‘ak for describing non-static Newtonian (cosmological) Situations. The 
MaxweU-Bolhann distribution function (with constant temperature) is the solution 
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of the classic one-partick Liouville equation only when v2 is a fust integral of the 
quation of motion; i.e. a' = dv'/dt = 0. When the corresponding dynamical of 
R3 has an ui # 0, we must, as in the relativistic case, look for first integrals of the 
equations of motion. 

me idea is then to associate a dynamical system in R3 with the geodesic equationsof 
v,, written in a particular system of coordinates, in such a way that the Iow-velo,-jdes 
Limit of fie relativistic first integral 42  equation (IO) is a first integral of the Newtonian 
dynamical system. 

This can be done (Alvarez and Sanz, paper in preparation) starting from the 
comoving coordinates of equation (91, for example, whose non-zero Christoffel symbk 
are (in this section the velocity of light will be denoted by c and for simplicity K =  1, i.e. 
Euclidean 3-spaces xo = cte) 

dR 
dx" 

R' E- R' . 
R p. = " 6, rOj = --sj '1 

we associate these with the following geodesic equations with &ne parameter 

d2xi dui 
dr2 - d r  (20) -=-- dx" dx' d2xo duo 

dr2 - d r  d r  d r  -E-= - - r U p U a U ~  -E'-- 
to give a dynamical system in R3 defined by d2xi/dt2 = ui with (uyc  = ui/u7: 

ui-dui- dr d ui 
c dxo-dxo d r ( 7 ) '  
------ - 

Substituting the expressions of du"/dr from equation (20) one gets 

a' = - GOc2 - 2r;,d -r ikViV + v i ( c c o  + +rfhk&). (22) 

In amoving coordinates, introducing equation (19) gives 

ui=(-2-+R&)vi R v2 
R C 

with Id =dR/dt = cR'. 
The Newtonian limit of this dynamical system is 

R .  
U' = -2-v't. R 

(23) 

It is easy to show that q2 (Newtonian) = R4v2 is a first integral of the dynmi&syStem 
equation (23) and precisely the limit of the relativistic q2 when c 3 ax 

m2R4v2 
q2(relat) = 1-v2/C2+m R v . 

Here u2 

? One can show that the dynamicai system (23) is completely equivalent to the one Usually used in 
cosmology (for example, Harrison 1967), i.e. 

Sijv'vj and u i  is given by equation (13b). 

i - s  i v i - S  --x i 
S 

a - -x ,  
S 

by identifying S = R-*. 
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we can then say that the non-relativistic limit of the Bel function in Robertson- 
space-times is 

f,,,(non-relat) = B e x p ( - m ~ ~ u ~ / ~ ~ )  (24) 

,&h is the solution of the classic one-particle Liouville equatior! for the Newtonian 
system (23) 

. 2R i 

R U .  
-- 

we believe that this result clearly shows the physical meaning of the Bel function: its 
d&al limit (without the ‘weak field’ assumption) being the distribution function 
equation (24), a solution of the classical one-particle Liouville equation coupled with 
thedynamical system equation (23). One can, of course, interpret equation (24) as a 
localMaxwell’ function, i.e., one with a temperature depending on the place according 
tottie law T= To/Rz and so, classically, this new function does not lead to a new 
‘equilibrium’. But in the general-relativistic (cosmological) situation a similar interpre- 
tarionof the Bel function in terms of the Jiittner-Synge one does not seem possible, and 
so the physical predictions must be different in both cases, as shall be shown in a 
subsequent paper. 

It is perhaps worth remarking that preliminary calculations carried out in the 
h e w o r k  of the kinetic theory of cosmology (Alvarez et all975) seem to indicate that 
Bel functions adequately describe the cosmological gas. 

we acknowledge frutitful discussions with Dr S a m ,  Dr Gracia, and above all, with our 
supervisor Dr L Bel. The referee’s comments have also been valuable. 

b e n & .  On the scalar entropy density 

!is well-known (cf E&rs 197 1) that the one-particle relativistic distribution function 
suudlY normalized by pointing out that 
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A very similar calculation shows that the entropy density must be defined as a 
4-vector: 

in order for 

S E  gas“ I, 
to represent the mean value of -1n f on the ‘inSta~taneOUs phase space’ defined from 
G c V4 and K, c P(x) .  From this and the relativistic Boltzmann equation, one 
demonstrate the relativistic H theorem, i.e., Vas“  2 0. 

In this paper, we follow an alternative approach first introduced by Bel, which is 
based on a physical interpretation of the zeroth-order moment of the DF the proper 
time density. One can then normalize the DF from this ‘action density’ and hboduaa 
scalar entropy, as has been done in the paper. The‘scalar’ variational principle can then 
be applied as in the classical situation, but as yet no H theorem has been derived from 
this approach. 

As the more intricate point seems to be the proposed interpretation of the zeroth 
order moment of the DF we outline here two different proofs of it. There exists, in fact, 
another one by Bel (1968) that has not yet been published. 

Proof 1. Choquet-Bruhat (1971) defines proper time (setting for simplicity m = 1) as a 
1-form T on the trajectories of the vector field X, such that i(X)r = 1 (i.e., the l-fOrm7, 
when integrated on a trajectory of X, gives the proper time of the corresponding part of 
the worldline of the material particle). 

Then, defining f3 = q A w, one can easily show that 6 = r A i(X)O (we recall that on 
surfaces Z c P( V4) constructed from G c V,, K, c P(x),  i (X)e reduces to P”Ua * 0). 

It follows that it is equivalent to interpretfq A o as giving the measure element from 
the mean ‘presence number’ of particles in phase space P( V4), and f i ( X ) e  =fPaO;, h W  

as the mean number of particle paths crossing a 6-submanifold. The theorem bY 
Choquet-Bruhat show that in the first case the ‘presence number’ of particlesinaregion 
must be interpreted as the sum of the proper times during which each trajectoryremains 
in the considered region. 

Then, if T =  I f q  A o is the proper time, one must interpret A = j f w  as ‘Proper time 
density’. 

Proof 2. One can also use the special relativistic formalism introduced by Halum 
(1967). He starts from the equations of motion of a particle with mass m: 

mduw/ds = Pp(xp, p “ )  mdxw/ds = p’ 

whose Cauchy problem has a solution of the form 

X I L ( S )  = x ’ ( s ;  xg,  p @  p ” ( s )  = p ” ( s ;  xb, p a  

such that x p ( 0 ) = x b  andp”(O)=pb. 
In /.L space P( V4), this trajectory can be represented by the density 
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Then, Hakim considers an ensemble (Gibbs) of similar systems (the same equations 
of motion) and ensures that the initial measures &e distributed according to D0(x& p a ,  
such that 

/ D O ( X C 7  pa77 A w = 1 * 
P( V4) 

It follows that, at a given proper time s, the density in p space is no longer 
R ( x P ,  p P ,  s) and we must take instead its average value 

Hakim has shown two lemmas connecting this formalism with the more usual one of the 
distribution functions: 

lim D(x”, p‘; s) = 0 
s - a  

(i) 

With the help of these results we can easily show the meaning of the zeroth-order 
moment: the number of particles within a (finite Lebesque-measurable) four-volume 
Gc V4, whose proper time is s, will be 

with the ‘local instantaneous density’ p defined by 

“leadug to the proposed interpretation for the zeroth-order moment. 
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